10,158 research outputs found

    Spacetime metric from linear electrodynamics

    Get PDF
    The Maxwell equations are formulated on an arbitrary (1+3)-dimensional manifold. Then, imposing a (constrained) linear constitutive relation between electromagnetic field (E,B)(E,B) and excitation (D,H)({\cal D},{\cal H}), we derive the metric of spacetime therefrom.Comment: 4 pages' latex-scrip

    Density Matrix Renormalization Group for Dummies

    Get PDF
    We describe the Density Matrix Renormalization Group algorithms for time dependent and time independent Hamiltonians. This paper is a brief but comprehensive introduction to the subject for anyone willing to enter in the field or write the program source code from scratch.Comment: 29 pages, 9 figures. Published version. An open source version of the code can be found at http://qti.sns.it/dmrg/phome.htm

    Auralization of Amplitude Modulated Helicopter Flyover Noise

    Get PDF
    Rotorcraft noise is an active field of study as the sound produced by these vehicles is often found to be annoying. A means to auralize rotorcraft flyover noise is sought to help understand the factors leading to annoyance. Previous work by the authors auralized a complete flyover event in which the source noise synthesis traversed a range of emission angles. The source noise definition process for the synthesis used helicopter flyover recordings. Although this process yielded both periodic and aperiodic (modulation) components at a set of discrete emission angles, only the periodic components were used in the previous work to synthesize the sound of the flyover event. In the current work, aperiodic amplitude modulation is incorporated into the source noise synthesis to improve its fidelity toward assessing rotorcraft noise annoyance. The method is demonstrated using ground recordings from a flight test of the AS350 helicopter for the source noise definition

    Quantum Interference Effects in Spacetime of Slowly Rotating Compact Objects in Braneworld

    Full text link
    The phase shift a neutron interferometer caused by the gravitational field and the rotation of the earth is derived in a unified way from the standpoint of general relativity. General relativistic quantum interference effects in the slowly rotating braneworld as the Sagnac effect and phase shift effect of interfering particle in neutron interferometer are considered. It was found that in the case of the Sagnac effect the influence of brane parameter is becoming important due to the fact that the angular velocity of the locally non rotating observer must be larger than one in the Kerr space-time. In the case of neutron interferometry it is found that due to the presence of the parameter Q∗Q^{*} an additional term in the phase shift of interfering particle emerges from the results of the recent experiments we have obtained upper limit for the tidal charge as Q∗≲107cm2Q^{*}\lesssim 10^{7} \rm{cm}^{2}. Finally, as an example, we apply the obtained results to the calculation of the (ultra-cold neutrons) energy level modification in the braneworld.Comment: 12 pages, 2 figure

    On the Use of Acoustic Wind Tunnel Data for the Simulation of sUAS Flyover Noise

    Get PDF
    Acoustic measurements of a small, unmanned aerial system were recently acquired during a ground test campaign. The purposes of the ground test, conducted in the NASA Langley Low Speed Aeroacoustic Wind Tunnel, were to characterize the source noise in terms of its tonal and broadband content, and to identify conditions under which multirotor and rotor-airframe interactions are present. The focus of this work is to assess the effectiveness of using those data for the simulation of flyover noise at a ground observer. The assessment is made at two levels of fidelity using different sets of tools. In the first, 1/3 octave band spectra at a ground receiver will be simulated in a frequency domain approach using the NASA Aircraft NOise Prediction Program. In the second, the pressure time history at a ground receiver is simulated in a time domain approach using the NASA Auralization Framework. Various objective measures are used to verify the simulation process. Acoustic wind tunnel and flight test data are used to gain insight into perceptually important effects

    Amyloid Fibril Solubility

    Get PDF
    It is well established that amyloid fibril solubility is protein specific, but how solubility depends on the interactions between the fibril building blocks is not clear. Here we use a simple protein model and perform Monte Carlo simulations to directly measure the solubility of amyloid fibrils as a function of the interaction between the fibril building blocks. Our simulations confirms that the fibril solubility depends on the fibril thickness and that the relationship between the interactions and the solubility can be described by a simple analytical formula. The results presented in this study reveal general rules how side-chain–side-chain interactions, backbone hydrogen bonding, and temperature affect amyloid fibril solubility, which might prove to be a powerful tool to design protein fibrils with desired solubility and aggregation properties in general

    Identifying DsJ(2700)D_{sJ}(2700) through its decay modes

    Full text link
    We study how to assign the recently observed DsJ(2700)D_{sJ}(2700) meson to an appropriate level of the csˉc \bar s spectrum by the analysis of its decay modes in final states comprising a light pseudoscalar meson. We use an effective lagrangian approach with heavy quark and chiral symmetries, obtaining that the measurement of the D∗KD^* K decay width would allow to distinguish between two possible assignments.Comment: RevTex, 6 pages - references adde
    • …
    corecore